head-co-096.jpg
head-co-097.jpg
head-co-098.jpg

PB-1 | Comparación de tuberías

Al comparar las características de rendimiento a largo plazo de los materiales plásticos, el polibuteno-1 reúne todas las necesarias para sistemas de tuberías. Si se compara en términos de flexibilidad, resistencia a productos químicos, fluencia, presión, fatiga por dilatación y contracción térmica (ciclo de dilatación y contracción térmica lineal), acústica, peso o resistencia del producto, el polibuteno-1 ofrece el rendimiento a largo plazo requerido hoy en día para los sistemas de tuberías a presión de calor y frío.
 

Polybutene piping extrusion process allowing huge scope in pipe wall sections and diameters


Perfil de tuberías
de PB-1

Comparación de los polímeros utilizados en sistemas de tuberías
  PB-1 PP-R PE-X PVC-C
Resistencia a impactos +++ ++ +++ +
Resistencia química +++ +++ +++ +++
Flexibilidad ++++ ++ +++ +
Resistencia química ++++ +++ +++ +++
Resistencia a la presión ++++ ++ +++ +++
Soldabilidad ++++ ++++ + ++
Resistencia a la temperatura y la presión ++++ ++ +++ ++
Estrés térmico en instalaciones ++++ ++ +++ +
Sostenibilidad
del sistema
++++ +++ +++ +++
Velocidad de la articulación Pequeño Ø ++++ + +++ ++
Gran articulación Ø Disponibilidad ++++ ++++ ++ +++

    Soldabilidad  ++++    Buena  +++    Regular  ++    Deficiente  +
 

La morfología única y el comportamiento de cristalización del PB-1 le proporcionan propiedades sin igual para los sistemas de tuberías de presión.

La elección ideal para sistemas de tuberías de presión

La combinación de propiedades que distingue al PB-1 del resto de los materiales es su alta flexibilidad, combinada con una resistencia sobresaliente a la fluencia de presión interna en un amplio rango de temperaturas.

Todos los materiales de poliolefina tienden a ceder cuando se exponen a una tensión continua durante largos periodos de tiempo.

Este comportamiento de flujo en frío se puede suprimir mediante una red 3D en la estructura del polímero, que se puede lograr, por ejemplo, enlazando químicamente cadenas de polímeros, como ocurre en la fabricación del polietileno (PE-X). Sin embargo, el polibuteno-1 alcanza una resistencia a la fluencia inherente superior (consulte la tabla siguiente) a través de una red física única que se consigue mediante la combinación de microcristalitas y estrechos entrelazamientos creados por la transformación cristalina (envejecimiento). Por lo tanto, no es necesario aplicar más reticulación o copolimerización, ni modificar la formulación.

En su forma de homopolímero más simple, el perfil de propiedades del polibuteno-1 lo convierte en la elección ideal para satisfacer las exigencias de aplicaciones para sistemas de tuberías de presión de calor y frío.
 


Resistencia a la presión

Comparación del rendimiento del PB-1 y materiales plásticos alternativos

Existen normas paralelas a la ISO 12230 que tienen en cuenta el efecto del tiempo y la temperatura en la resistencia prevista de los materiales enumerados a continuación. Los datos presentados en estas normas ofrecen medios útiles de comparación del rendimiento de estos materiales plásticos alternativos utilizados en los sistemas de tuberías.

El siguiente gráfico muestra las líneas de referencia del rendimiento (propiedades de resistencia a la presión) para los siguientes materiales a 70 °C en una escala equivalente:

Materiales con un rendimiento mejor

  • PB-H | ISO 12230 (2012)
  • PB-R | ISO 12230 (2012)

Materiales con un rendimiento medio sin punto de rodilla

  • PE-X - ISO 15875 (2003)
  • PP-RCT - ISO 15874 (2013)
  • PE-RT type II - ISO 12230 (2012)

Materiales con un rendimiento bajo con punto de rodilla

  • PE-RT type I - ISO 22391 (2009)
  • PP-R - ISO 15874 (2013)

Tras 10 años de exposición a una tensión continua aplicada, el polibuteno-1 con el mejor rendimiento (PB-H y PB-R) conserva un 50 % más de resistencia que los materiales de rendimiento medio (PE-X, PP-RCT y PE-RT de tipo II) y de un 70 % a un 90 % más de resistencia que los materiales de rendimiento bajo, PE-RT de tipo I y PP-R.

Tensión de diseño

Tras 10 años de tensión continua aplicada, el PB-1 conserva alrededor de un 50 % más de resistencia que el PE-X, el PP-RCT y el PE-RT de tipo II, y de un 70 % a un 90 % más de resistencia que el PE-RT de tipo I y el PP-R.

Mediante el empleo de criterios normalizados presentados en la ISO 10508, es posible calcular la tensión circunferencial máxima permitida de estas tuberías de poliolefina alternativas para las distintas clases de temperatura de aplicación normalizadas. Este cálculo de la tensión de diseño da como resultado la comparación ilustrada en la tabla siguiente, que muestra que los polímeros de PB-1 alcanzan los valores de tensión circunferencial más altos en todas las clases de aplicación normalizadas. La ventaja intrínseca del PB-1 en cuanto a la tensión que puede soportar es entre un 35 % y un 90 % más alta, en función de la clase de aplicación y el material. Esto significa, de hecho, que con un grosor equivalente, las tuberías de PB-1 ofrecen un factor de seguridad significativo con respecto a estos materiales plásticos alternativos en los sistemas instalados. Esto significa, de hecho, que con un espesor equivalente, las tuberías de PB-1 ofrecen un factor de seguridad significativo con respecto a estos materiales plásticos alternativos en los sistemas instalados.
 

Tensión de diseño
@10 bar
Clase 1
HWS 60 °C
Clase 2
HWS 70 °C
Clase 3
Low Temp UFH
max 50 °C
Clase 4
UFH & LT Heat
max 70 °C
Clase 5
HAT Heat
max 90 °C
20 °C/50y
PB-H 5.73 5.04 7.83 5.46 4.31 10.92
PB-R 5.17 5.13 7.82 4.34 4.13 10.93
PE-X 3.85 3.54 4.61 4.08 3.24 7.60
PP-R 3.09 2.13 4.68 3.30 1.90 6.93
PP-RCT 3.64 3.40 5.73 3.67 2.92 9.24
PE-RT I 3.32 2.68 4.65 3.27 2.38 6.68
PP-RT II 3.53 3.37 5.12 3.38 2.88 7.46
PVC-C 4.38 4.16 10

Podemos calcular el espesor de pared mínimo permitido a partir de la tensión circunferencial máxima permitida. En el cálculo se observa claramente que las tuberías de polibuteno-1 se pueden fabricar con un espesor de pared significativamente reducido al compararlas con otros materiales que dependen de las limitaciones normalizadas para las aplicaciones.

Un espesor de pared menor también implica un orificio interno mayor para un diámetro externo de tubería específico, lo que da lugar a una menor pérdida de la presión en el cabezal y una velocidad de flujo inferior para suministrar un volumen fijo de agua.

*PE-RT significa Polietileno resistente a la temperatura


Resistencia a la fluencia

Resistencia a la fluencia superior a largo plazo

En contraste con otros termoplásticos utilizados en aplicaciones de tuberías, no es necesario modificar el rendimiento a través de la formulación, la reticulación ni la copolimerización en los sistemas de tuberías de PB-1 para cumplir las estrictas normas de rendimiento que se aplican en su uso.

En comparación con otros materiales de poliolefina, el polibuteno-1 ofrece un nivel de resistencia a la presión mayor en situaciones de tensión continua durante largos periodos de tiempo. Esto se conoce como comportamiento de fluencia y en el gráfico se ilustra el rendimiento superior del PB-1 cuando se superan las 100 horas.

Además de sus excelentes propiedades mecánicas y térmicas, el PB-1 ofrece un alto nivel de resistencia a la acción de productos químicos y proporciona un nivel de resistencia a la inflamabilidad que cumple las exigencias de la mayoría de aplicaciones.

El PB-1 se puede procesar por medio de procesos de moldeado por inyección o extrusión normalizados en una amplia gama de productos. Tanto en el caso de los homopolímeros como en el de los copolímeros, el equilibrio de propiedades del PB-1 lo convierten en el material técnicamente preferido para la producción de sistemas de tuberías de agua a presión caliente y fría.
 


Peso, flexibilidad
e hidrostática

Peso y eficiencia hidrostática de la tubería


Se calcula para la clase de aplicación 2, presión de diseño de 10 bares, en función de datos publicados.

 


Propiedades acústicas

Amortiguación acústica

Las paredes más delgadas de las tuberías, así como la gran elasticidad y baja densidad específica de las tuberías de PB-1 ofrecen una gran absorción de los ruidos de funcionamiento.

Entre las propiedades superiores del polibuteno-1 en comparación con otros materiales, cabe citar una amortiguación acústica excelente.

La combinación de una pared de tubería más delgada, un módulo elástico bajo y la reducida densidad específica de las tuberías de polibuteno-1 (ρ = 0,92 g/cm3) garantiza una gran absorción de los golpes de ariete y otros ruidos asociados a la calefacción y refrigeración en sistemas de tuberías.

Las pruebas mostraron una reducción del 90 % del ruido que se produce a través de las tuberías en el Royal Albert Hall de Londres tras la instalación de tuberías de PB-1.
 

Velocidad del sonido de los materiales
  Densidad (g/cm3) Módulo elástico (MPa) Velocidad del sonido (m/s)
Goma blanda 0.90 90 320
PB-1 0.93 350 620
PE-X 0.95 600 800
CPVC 1.56 3,500 2,350

Golpe de ariete

Una columna de agua en movimiento dentro de una tubería contiene energía cinética almacenada, en función de su masa y velocidad. Como el agua es un fluido fundamentalmente incompresible, esta energía no puede absorberse cuando la válvula se cierra de forma repentina. Como resultado se produce un pico de presión instantáneo elevado, normalmente conocido como "golpe de ariete".

El módulo elástico bajo de polibuteno-1 en combinación con el espesor reducido de la pared genera un pico de presión bajo para un rango de presión y diámetro exterior de la tubería determinados. La siguiente tabla compara el pico de presión máximo para tuberías de diámetro exterior de 38,1 mm (1-1/2") de diferentes materiales plásticos, diseñados para el mismo servicio de presión.

Existen cinco factores que determinan la gravedad del golpe de ariete

  • Velocidad
  • Módulo de elasticidad del material de la tubería
  • Diámetro interior de la tubería
  • Espesor de la pared de la tubería
  • Tiempo de cierre de la válvula

Los picos de presión máximos provocados por el golpe de ariete pueden calcularse mediante la siguiente ecuación tomada del "Manual de Diseño del Sistema de Tuberías de Termoplásticos", de Thomas Sixmith y Reinhard Hanselka, Marcel Dekker Inc., págs. 65-69

Ps = V((3960 E t)/(E t + 3 x 105 DI))½
donde:
Ps = pico de presión (psi)
V = velocidad del agua (ft/sec)
DI = diámetro interior de la tubería (mm)
E = módulo de elasticidad del material de la tubería (psi)
t = espesor de la pared de la tubería (mm)
 

  E E DI t V Ps Ps
  [psi] [MPa] [mm] [mm] [ft/s] [psi] [bar]
PB-1 65000 450 32.5 (1.28") 3.8 (0.15") 5.0 49.5 3.4
PE-X 87000 600 28.9 (1.14") 5.6 (0.22") 5.0 72.4 5.0
PP 116000 800 26.7 (1.05") 6.6 (0.26") 5.0 93.0 6.4
CPVC 507000 3500 30.9 (1.22") 4.6 (0.18") 5.0 140.6 9.7

 

A menudo se hace referencia al polibuteno-1 como polibuteno, PB, PB-1 o polibutileno.

El polibuteno-1 no es vendido por los miembros de la PBPSA para su uso en aplicaciones de tuberías en Norteamérica, y dichas partes exigen a sus clientes o distribuidores que no vendan productos fabricados con PB-1 para aplicaciones de tuberías en Norteamérica.